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ABSTRACT 
 
 

his paper studies the three-player gambler’s ruin with 
variable bet size, that is, more than one chip may be 
transferred from one player to another. Weighted 
directed multigraphs were constructed to model the 
transitions between chip states. Linear systems are 

constructed based on the connections between nodes in these 
graphs. Solutions for the placing probabilities of each player are 
obtained from these linear systems. Expected time until ruin is 
solved by modeling the game as a Markov process. A numerical 
algorithm is developed to solve the No Limit three-player 
gambler’s ruin problem for any positive integer chip total. 
 
 
INTRODUCTION 
 
In the two-player gambler’s ruin problem, two gamblers with 
initial wealths A and B play an even-money game against each 
other, each time betting a fixed amount. From the first gambler’s 
perspective, this scenario is equivalent to the classic gambler’s 
ruin problem with target wealth S = A+B. Their probability of 

winning is 
!

!"#, which was proved using discrete-time (random 

walk) methods or continuous time (Brownian motion) methods 
[9]. The expected game duration is T = AB [8], which was 
obtained using difference equations and recursions. 

 
The three-player gambler’s ruin problem, first studied by 
Bachelier in 1912 [2], has several variations based on the players 
involved in each betting round, and how winners and losers are 
selected in these rounds. One form of the three-player game is 
called the three-tower problem. In each round, a game is played 
with one winner and one loser. Suppose that each game involves 
exactly two players, each with an equal probability of winning 
the game. The players are paired randomly with equal 
probabilities, so that each pair has a probability 1/3 of being 
selected. If we fix the bet size to 1 unit and the initial wealths are 
natural numbers, we get the three-tower game, which we can 
also refer to as the gambler’s ruin model with unit bets. 
 
 If the bet size may vary depending on the wealths of the players, 
the scenario is defined as the No Limit variation, or 
“occasionally all in” as described in a paper by Diaconis and 
Ethier [6]. The expected game duration for the three-tower 

problem has been solved and is given by ! =
$!#%
!"#"% [2, 7, 13]. 

Stirzaker introduced solutions using martingales in this area of 
research [13]. 
 
In the past years, several solutions have been used in modeling 
the three-tower problem. In these models, the probability of a 
player’s success is easily solved by recursion and is given by the 
proportion of a player’s wealth to the total wealth of all players 
involved in the game. Bruss et al. (2002) used martingales in 
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giving an asymptotic solution to the three-tower problem [3]. 
David (2015) used weighted directed multigraphs and recursions 
to model and solve the three-tower problem [4]. For a fixed 
wealth S, unique states were generated and transitions between 
these states were represented as edges in a multigraph. A linear 
system was constructed based on recurrence equations, which 
was then solved to obtain the ruin probabilities of each player. 
After ruin probabilities are solved, placing probabilities of each 
player can be computed easily. Diaconis et al. (2020) studied 
gambler’s ruin estimates on finite inner uniform domains, where 
they studied the three-player problem as one example [5]. They 
related these estimates to properties of the underlying Markov 
chain and its Doob transform. Diaconis and Ethier (2020) 
discussed six different methods of approximating gambler’s ruin 
probabilities [6]. They mentioned that while exact computations 
using Markov chain methods are feasible for wealth totals which 
are not too large, these methods seem difficult for values of 
practical interest. Their preferred method is linear interpolation 
yielding numerical results accurate to about four to five decimal 
places. 
 
The main purpose of this paper is to solve the placing 
probabilities of each player for the three-player gambler’s ruin 
problem with varying bet amount. Specifically, the paper aims 
to accomplish the following. First, we will construct a weighted 
directed multigraph for the No Limit three-player gambler’s ruin 
with prescribed total wealth S. From this, we will construct an 
appropriate linear system that represents the multigraph for the 
No Limit three-player gambler’s ruin with the prescribed total 
wealth S. We will then develop a numerical algorithm for 
solving placing probabilities for the No Limit three-player 
gambler’s ruin with the prescribed total wealth S. Lastly, we will 
present a method for calculating the expected time until ruin for 
the No Limit three-player gambler’s ruin with the prescribed 
total wealth S using the previously described numerical 
algorithm. 
   
 
THEORETICAL FRAMEWORK 
 
Weighted Directed Multigraphs  
We use the following definitions to define a weighted directed 
multigraph. 
 
1. A graph G(V,E) consists of two types of elements, namely 

vertices and edges. Every edge has two endpoints in the set 
of vertices. V is the set of vertices while E is the set of edges. 

2. A weighted graph is a graph having a weight, or number, 
associated with each edge. 

3. A directed graph is a graph where all edges are directed 
from one vertex to another. 

4. A multigraph is a graph which may have multiple edges 
connecting the same pair of vertices. 

5. A weighted directed multigraph is a graph satisfying items 
(1) to (4). 

 
Weighted directed multigraphs will be used to model the 
transitions between states given the players’ initial wealths. 
Variables for the players’ placing probabilities will be assigned 
to each unique state. The system of equations relating these 
variables will then be solved for these probabilities. 
 
Absorbing Markov Chains 
We define an absorbing Markov chain using the following 
definitions [10]. 
 
1. Given a set of states S = {s1,s2,...,sn} , a Markov chain is a 

process satisfying the following conditions: 

(a) The transition probability pij of moving from an initial 
state si to any next state sj depends only on the current 
state si and the next state sj. 

(b) The sum of all transition probabilities from any state 
si is equal to 1, i.e., 

# $&'
(

')*
= 1        (1) 

for all i ∈ {1,2,...,n}. 
 
2. A state si of a Markov chain is called an absorbing state if 

it is impossible to leave it, i.e., pii = 1. 
 
3. An absorbing Markov chain is a Markov chain satisfying 

the following conditions: 
(a) It has at least one absorbing state. 
(b) It is possible to go from any state to at least one 

absorbing state in a finite number of steps. 
 
4. A state si of an absorbing Markov chain is called a transient 

state if it is not absorbing. 
 

5. Absorbing Markov chains can be represented using matrices 
whose sizes depend on the number of transient and 
absorbing states. Suppose there are t transient states and r 
absorbing states for an absorbing Markov chain. The 
transition matrix has the following canonical form [10]: 

           ' = (
) *

+ ,
-    (2) 

 
where Q is a t × t matrix, R is a nonzero t × r matrix, 0 is an 
r × t zero matrix, and I is an r × r identity matrix. The first t 
states are the transient states while the last r states are the 
absorbing states. 

 
6. For an absorbing Markov chain P, the matrix N = (I − Q)−1 

is called the fundamental matrix for P [10]. The entry nij 
of N gives the expected number of times that the process is 
in the transient state sj if it started in the transient state si. 

 
The No Limit three-player gambler’s ruin will be modeled using 
an absorbing Markov chain in order to calculate the expected 
time until ruin, as shown in Section 2. 
 
 
MATERIALS AND METHODS 
 
This paper aims to calculate placing probabilities for the three 
players given their initial wealths. By a theorem by Bachelier [2], 
first place probabilities are the proportions of the players’ initial 
wealths to the total wealth of all players, which our results will 
show that this is indeed the case. What remains is to calculate 
the probabilities of placing second and third for each player. 
These calculations are done using a numerical algorithm 
(executed in Matlab) described in this section. We first present 
the following. 
 
Definition 1 A chip state is an ordered triple (x,y,z), where x,y,z 
∈ ℕ  ∪ {0} and x ≥ y ≥ z. The coordinates of a chip state 
represent the wealths of each player at a given time. 
 
Definition 2 A chip position is a coordinate of a chip state (x,y,z). 
Each position in a chip state has corresponding probabilities of 
finishing first, second or third among the three players. 
 
Definition 3 A terminal state is a chip state where at least one 
chip position is zero. Terminal states have known placing 
probabilities for each player. 
 
Definition 4 A nonterminal state is a chip state with three 
positive chip positions. 
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Definition 5 In a betting round involving players with wealths x 
and y, the permissible bet sizes are elements of the set 
{1,2,...,min{x,y}}, or natural numbers less than or equal to the 
number of chips in the smaller stack involved in the betting 
round. 
 
Two players are selected randomly using a uniform distribution, 
and these two players will face each other in an even-money 
betting round. Without loss of generality, let the two players be 
Players 1 and 2 having wealths x and y, respectively. The bet 
size n is selected randomly using a uniform distribution from the 
set of permissible bet sizes {1,2,...,min{x,y}}. The winner of the 
round is selected randomly, and that player adds to his stack n 
chips taken from the other player’s initial stack. For example, if 
Player 1 wins over Player 2, their new chip stacks will be x + n 
and y − n, respectively. Upon reaching a terminal state, a chip 
state of the form (a,b,0), second place probabilities can be solved 
trivially. Upon reaching nonterminal states, the process is 
repeated. 
 
We use the following definition for the mapping for the No Limit 
three-player gambler’s ruin. 
 
Definition 6 Suppose (x,y,z) is a nonterminal state. The possible 
states after one round of betting are shown by the following map: 
 

(", $, %) →

⎩
⎪⎪
⎨
⎪⎪
⎧(" + -, $ − -, %), where	- ∈ {1,2, … ,min{ ", $}}
(" − -, $ + -, %), =ℎ?@?	- ∈ {1,2, … ,min{ ", $}}
(" − -, $, % + -), =ℎ?@?	- ∈ {1,2, … ,min{ ", %}}
(" + -, $, % − -), =ℎ?@?	- ∈ {1,2, … ,min{ ", %}}
(", $ − -, % + -), =ℎ?@?	- ∈ {1,2, … ,min{ $, %}}
(", $ + -, % − -), =ℎ?@?	- ∈ {1,2, … ,min{ $, %}}

 

 
with each edge having weight *

+, , where m is the maximum 
permissible bet size between the players participating in the 
round. 
 
Construction of Multigraph 
Let S be the total wealth of the three players. We construct the 
weighted directed multigraph using the following algorithm: 
 
1. Unique states (x,y,z) are generated such that S = x + y + z and 

x ≥ y ≥ z, that is, the total wealth of the three players is S and 
their wealths are arranged in decreasing order. The 
generated unique states will serve as the nodes in the graph. 
For easy visualization, states will be arranged in columns 
according to their third coordinates. 

 
2. Terminal states (which are those with a zero position) are 

put on the leftmost column in the graph, with the states 
arranged in decreasing order of their first coordinates. 

 
3. States with the last coordinate equal to 1 are then put on the 

next column in the graph, with the states also arranged in 
decreasing order of their first coordinates. States in different 
columns are put in the same row if they have the same first 
coordinates. 

 
4. The process of constructing rows and columns of nodes is 

repeated until all states are exhausted. 
 
5. Given a nonterminal state (x,y,z), if it is possible for the 

wealths to become (a,b,c) after one round of betting, an edge 
directed from (x,y,z) to (a,b,c) is constructed, with weight 
equal to one-sixth multiplied to the reciprocal of the 
maximum bet size allowed between the two players 
involved in the round. The total weight of all outward edges 
from a nonterminal state must be 1. 

 

6. Loops, which are edges whose initial and final nodes are the 
same, may be constructed if a state goes to itself (up to 
permutation of coordinates) after one round. Multiple edges 
between a pair of nodes may also be constructed if there are 
multiple possible ways of doing so. 

 
Construction of Linear System 
We construct the linear system using the following algorithm: 
[12] 
 
1. Variable assignment 

A variable will be associated to each of the unique chip 
positions from all terminal and nonterminal states in the 
order they are generated. 
 

2. Construction of transition matrix Q 
An n×n matrix Q is constructed, where n is the number of 
unique chip positions from all nonterminal states. Matrix Q 
is the matrix representing the transitions between 
nonterminal chip positions. 
 

3. Construction of transition matrix R 
An n×m matrix R is also constructed, where m is the number 
of unique chip positions from all terminal states. This matrix 
represents the transitions from nonterminal to terminal chip 
positions. 
 

4. Computation of entries of matrices Q and R 
For each of the n variables corresponding to nonterminal 
positions, we determine where the corresponding chip 
positions are being moved. 
 

5. Set up of linear system 
We set up and solve the linear system 

 
					(I	−	Q)B	=	R    (4) 

 
where B is an n×m matrix containing the probabilities for the 
n unique nonterminal chip positions of ending up in the m 
unique terminal chip positions. 

 
6. Computation of placing probabilities 

After solving for matrix B, we construct an m × 3 matrix W 
containing the placing probabilities for the corresponding 
terminal positions in the three-player game. Lastly, we find 
BW, which contains the final placing probabilities. 

 
Given total wealth S, it can be shown using integer partitions [1] 

and recurrence relations that 0 = 1
(./*)!

1 2and 3 = 4 − 1 + 1
.
22. 

The derivation of these results is not provided in this paper. 
 
Calculation of Expected Time until Ruin 
In the three-player gambler’s ruin, time until ruin is the number 
of games played by the players until one of them reaches zero 
wealth. In calculating the expected time until ruin, we use 
absorbing Markov chains. Recall that an absorbing Markov 
chain P has the following canonical form: 
 

' = (
) *

+ ,
-    (5) 

 
where Q represents the transitions between transient states, R 
represents the transitions from transient states to absorbing states, 
and I represents the transitions between absorbing states. In the 
three-player gambler’s ruin, the transient states are the 
nonterminal states, while the absorbing states are the terminal 
states, where only two players have nonzero wealths. Hence, for 
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the canonical form of the matrix, we use matrices Q and R as 
constructed in Section 2.2, while I is an m-by-m identity matrix. 
In modeling this problem as an absorbing Markov chain, the 
chain is absorbed when one of the three players is ruined. Hence, 
the expected time until ruin is equal to the absorption time of the 
chain. We use the fundamental matrix N of the absorbing 
Markov chain P, with the existence of the former guaranteed by 
the following proposition [10]. 
 
Proposition 1 Let P be an absorbing Markov chain, and Q the 
submatrix of P representing the transitions between transient 
states. Then N = (I − Q)−1 exists. 
 
Proposition 1 also guarantees the existence of solutions for our 
linear system for ruin probabilities. We now use the following 
theorem in finding the expected time until ruin [10]. 
 
Theorem 2 Given an absorbing Markov chain P with N as its 
fundamental matrix, and P starts in state si, let Ti be the expected 
number of steps before the chain is absorbed. Let T be the 
column vector whose ith entry is Ti. Then 
 

								T	=	N	·	1    (6) 
 
where 1 is the column vector whose entries are all 1. 
 
By the previous theorem, the expected time until the chain is 
absorbed given the starting state si is given by the sum of the 
entries in the ith row of the fundamental matrix N. This quantity 
is precisely the expected time until ruin, or average number of 
games played until a player’s wealth is reduced to zero, given an 
initial nonterminal state for the three-player gambler’s ruin. 
 
The following theorem tells us how absorption probabilities are 
obtained using the fundamental matrix of an absorbing Markov 
chain [10, 12]. 
 
Theorem 3 Let bij be the probability that an absorbing chain 
will be absorbed in the absorbing state sj if it starts in the 
transient state si. Let B be the matrix with entries bij. Then B is 
a t × r matrix, and 
 

									B	=	NR,    (7) 
 
where N is the fundamental matrix and R is as in the canonical 
form. 
 
 
RESULTS AND DISCUSSION 
 
In this section, the connections from a nonterminal state to a 
terminal or nonterminal state are presented using theorems. 
Multigraphs and solutions for some chip states are presented. 
Solutions obtained from this research are compared to those 
from the ThreeTower scenario. Expected time until ruin for 
some states and wealth totals are discussed. 
 
Multigraph Theorems 
The following theorem describes the connections between a 
nonterminal state (x,y,z) and some terminal states. 
 
Theorem 4 Given a nonterminal state (x,y,z), then it is 
connected to the following terminal states, with the indicated 
edge weights: 
 

(i) (x + z,y,0), with edge weight *+3 

(ii) (x,y + z,0) or (y + z,x,0), with edge weight *+3 
(iii) (x + y,z,0), with edge weight *+4 

 

Proof: We prove (i). Let (x,y,z) be a nonterminal state. Then 

from Definition 6, (x,y,z) → (x+b,y,z −b) with probability 
*
+ for 

some b ∈ {1,2,...,z}. Since b is uniformly distributed, then b = z 
with probability 

*
3. So (x,y,z) → (x + z,y,0) with probability 

*
+ ⋅*

3 =
*
+3. The rest of the proof follows similarly. 

 
The following theorem describes the connections between a 
nonterminal state (x,y,z) and some other nonterminal states. 
 
Theorem 5 Given a nonterminal state (x,y,z). Let a = min{y,z}, 
b = min{x,z} and c = min{x,y} be the maximum permissible bet 
size for each pair of players. Then (x,y,z) is connected to the 
following nonterminal states, with the indicated edge weights: 
(i) (x,y + n,z − n) with edge weight	 *+5, where n ∈ {1,2,...,a} 

(ii) (x,y − n,z + n) with edge weight *+5, where n ∈ {1,2,...,a} 

(iii) (x + n,y,z − n) with edge weight *+6, where n ∈ {1,2,...,b} 

(iv) (x − n,y,z + n) with edge weight *+6, where n ∈ {1,2,...,b} 

(v) (x + n,y − n,z) with edge weight *+7, where n ∈ {1,2,...,c} 

(vi)  (x − n,y + n,z) with edge weight *+7, where n ∈ {1,2,...,c} 

 
provided that each chip position in the new chip state is nonzero. 
The chip positions are rearranged in decreasing order to get a 
valid chip state. 
 
Proof: We prove (i). Let (x,y,z) be a nonterminal state, and a = 
min{y,z}. Then from Definition 6, (x,y,z) → (x,y + k,z − k) with 
probability 

*
+  for some k ∈ {1,2,...,a}. Since k is uniformly 

distributed, then k = n with probability 
*
5 . So (x,y,z) → 

(x,y+n,z−n) with probability 
*
+ ⋅

*
5 =

*
+5 . The rest of the proof 

follows similarly. 
 
Three-Player Game for S = 6 
Example 1 In this example, we take a more detailed look at the 
No Limit three-player gambler’s ruin results for S = 6. We first 
look at the graph for the three-player game (Unit Bet and No 
Limit variants) with total wealth S = 6, as shown in Figures 1 
and 2. 
 

 
Figure 1: 3-Tower Multigraph for S=6 
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Figure 2: No Limit 3-Player Multigraph for S = 6 

In this example, the unique terminal states are (5,1,0), (4,2,0) 
and (3,3,0), denoted by P1, P2, and P3, respectively. The unique 
nonterminal states are (4,1,1), (3,2,1) and (2,2,2), denoted by P4, 
P5, and P6, respectively. From these states, we observe that there 
are six unique chip positions in nonterminal states and eight 
unique chip positions in terminal states. However, note that in 
Figure 1, all edges have weight 1/6, while in Figure 2, edges 
have weights 1/6 or 1/12. This difference in edge weights occurs 
due to the different permissible bet sizes in each scenario. 
 
In Figure 2, note that there are two outward edges from P4 going 
to P1. One edge represents Player 1 beating Player 2 for 1 chip, 
while another edge represents Player 1 beating Player 3. All of 
the outward edges from P4 have weight 1/6 since the maximum 
permissible bet size for each pair of players is 1. However, for 
P5, not all outward edges have the same weight. Some edges 
have weight 1/12 since these represent the cases where Players 
1 and 2 are involved in the round of betting, with the maximum 
permissible bet size equal to 2 instead of 1. Loops for P5 are 
obtained since it can transition to (3,1,2) (with weight 1/6) if 
Player 3 beats Player 2 for 1 chip, or to (2,3,1) (with weight 
1/12) if Player 2 beats Player 1 for 2 chips. Note that while P6 is 
a nonterminal state by definition, placing probabilities for each 
player in this state can be computed trivially, with each player 
having 1/3 probability of finishing first, second or third. 
 
After the construction of a multigraph for a given wealth total S, 
a linear system representing the transitions between the states is 
constructed, as detailed in Section 2.2. For example, if S = 6, we 
define six variables v1 up to v6 corresponding respectively to the 
unique nonterminal chip positions 4 and 1 in P4, positions 3, 2 
and 1 in P5, and position 2 in P6. We also define eight variables 
w1 up to w8 for terminal states, corresponding respectively to the 
chip positions 5, 1, and 0 in P1, positions 4, 2, and 0 in P2, and 
positions 3 and 0 in P3. We get the linear system by setting up 
the recurrence: 
 

     

⎝

⎜⎜
⎛
$" − #

#$

⎣
⎢
⎢
⎢
⎢
⎡0 0 4 0 0 0
0 0 0 2 2 0
1 1 2 1 0 2
1 1 1 0 2 2
0 2 0 2 1 2
0 0 2 2 2 0⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞
3 = #

#$

⎣
⎢
⎢
⎢
⎢
⎡4 0 0 4 0 0 0 0
0 2 2 0 2 2 0 0
1 0 0 2 0 0 2 0
0 0 1 0 2 0 2 0
0 1 0 0 0 2 0 2
0 0 0 2 2 2 0 0⎦

⎥
⎥
⎥
⎥
⎤

     (8) 

 

The solution to this system is an n × m matrix that gives the 
absorption probabilities for the n unique nonterminal chip 
positions into the m unique terminal chip positions. This system 
has the following solution: 
 

8 =

⎣
⎢
⎢
⎢
⎢
⎡0.3843 0.0112 0.0136 0.4362 0.0343 0.0295 0.0847 0.0062
0.0124 0.1989 0.1977 0.0319 0.2329 0.2353 0.0486 0.0423
0.1528 0.0336 0.0409 0.3087 0.1029 0.0884 0.2540 0.0187
0.0553 0.0505 0.1215 0.1185 0.2617 0.1197 0.2251 0.0476
0.0192 0.1431 0.0649 0.0728 0.1354 0.2918 0.0663 0.2064
0.0379 0.0379 0.0379 0.2500 0.2500 0.2500 0.0909 0.0455⎦

⎥
⎥
⎥
⎥
⎤
 (9) 

 
which means that for v1 (4 in P4), its probability of ending up in 
the terminal chip position w1 (5 in P1) is 38.43%, and so on. 
 
Matrix B gives the absorption probabilities given an initial 
position vi and final position wj for 1 ≤ i ≤ 6 and 1 ≤ j ≤ 8. To 
calculate the players’ placing probabilities, we need the 
solutions to the two-player game for S = 6. In this scenario, the 
players’ winning probabilities are equal to the proportion of 
their wealths to the total wealth of all players. We have the 
following matrix W whose entries are the placing probabilities 
for each nonterminal chip position in the three-player game. 
 

	 1 2 3	

A =

5

1

0

4

2

0

3

0 ⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎡
5/6 1/6 0

1/6 5/6 0

0 0 1

2/3 1/3 0

1/3 2/3 0

0 0 1

1/2 1/2 0

0 0 1⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎤

	

               (10) 
 
Using B in Equation 9 and W in Equation 10, we get matrix BW, 
whose entries are the placing probabilities for each nonterminal 
chip position in the three-player game. This matrix is shown in 
Equation 11: 
 

	 1 2 3 

MN =

4

1

3

2

1

2 ⎣

⎢
⎢
⎢
⎢

⎡
0.6667 0.2840 0.0493

0.1667 0.3580 0.4753

0.5000 0.3520 0.1480

0.3333 0.3779 0.2888

0.1667 0.2702 0.5632

0.3333 0.3333 0.3333⎦

⎥
⎥
⎥
⎥

⎤

 

               (11) 
 
For comparison, matrix C in Equation 12 is the matrix 
containing placing probabilities for each nonterminal chip 
position in the Three-Tower game [12]. 
 

	 1 2 3 

S =

4

1

3

2

1

2 ⎣

⎢
⎢
⎢
⎢

⎡
0.6667 0.2910 0.0423

0.1667 0.3545 0.4788

0.5000 0.3731 0.1269

0.3333 0.4078 0.2589

0.1667 0.2191 0.6142

0.3333 0.3333 0.3333⎦

⎥
⎥
⎥
⎥

⎤

 

               (12) 
Now, the fundamental matrix N is given as follows: 
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5 =

⎝

⎜⎜
⎛
6% −

1
12
⎣
⎢
⎢
⎢
⎢
⎡0 0 4 0 0 0
0 0 0 2 2 0
1 1 2 1 0 2
1 1 1 0 2 2
0 2 0 2 1 2
0 0 2 2 2 0⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

&#

=

⎣
⎢
⎢
⎢
⎢
⎡197/189 17/350 91/206 12/181 11/294 1/11
6/247 1617/1516 7/135 23/96 79/311 1/11
79/622 29/199 273/206 36/181 11/98 3/11
60/533 41/256 16/75 1125/989 217/760 3/11
6/181 23/96 40/409 914/3047 353/285 3/11
1/22 1/11 3/11 3/11 3/11 25/22⎦

⎥
⎥
⎥
⎥
⎤

 

                
               (13) 

 
By Theorem 2, 
 
T	=	N(1	1	1	1	1	1)T	=	(19/11	19/11	24/11	24/11	24/11	
23/11)T	

               (14) 
 
which gives the expected time until ruin for the nonterminal 
states for S = 6. Recall that the first two rows of N correspond 
to the unique positions of the state (4,1,1), the next three rows 
for the unique positions of (3,2,1), and the last row for the unique 
position in the state (2,2,2). This means that the expected time 
until ruin for the states (4,1,1), (3,2,1) and (2,2,2) are 
19/11,24/11 and 23/11 time steps, respectively. 
 
Expected Time until Ruin 
Table 1 shows the expected time until ruin for S = 4,5,6,7 and 8 
for the Unit Bet and No Limit three-player gambler’s ruin 
scenarios. 

	
Table 1: Expected Time Until Ruin for States with S = 4,5,6,7 and 
8 

    Expected Time Until Ruin 

S State Unit Bet No Limit Bet 

4 (2,1,1) 1.500000 1.500000 

5 
(3,1,1) 1.800000 1.636364 

(2,2,1) 2.400000 1.909091 

6 

(4,1,1) 2.000000 1.727273 

(3,2,1) 3.000000 2.181818 

(2,2,2) 4.000000 2.090909 

7 

(5,1,1) 2.142857 1.791045 

(4,2,1) 3.428571 2.373134 

(3,3,1) 3.857143 2.334755 

(3,2,2) 5.142857 2.616205 

8 

(6,1,1) 2.250000 1.817985 

(5,2,1) 3.750000 2.453954 

(4,3,1) 4.500000 2.570423 

(4,2,2) 6.000000 2.790358 

(3,3,2) 6.750000 2.927411 

 
Expected time until ruin for the Unit Bet case is calculated using 

the formula ! =
$!#%
!"#"% [3]. For example, for the state (3,2,1), 

expected time until ruin is 

! =
$!#%
!"#"% 	=

$	·	$·	2·	*
$"2"* = 3                 (15) 

 
For the No Limit case, Theorem 2 is used in calculating the 
expected time until ruin. An example of this calculation is shown 
in Section 3.2 for states with S = 6. Note that if we use Theorem 
2 in calculating the expected time until ruin for the Unit Bet case, 

we get identical results as the known formula, validating our 
calculation method for the expected time until ruin. 
 
Observe that for any state, the expected time until ruin for the 
Unit Bet case is greater than or equal to that for the No Limit 
case. This is true because of the difference in nature of the 
transfer of wealth between pairs of players in each round of the 
two cases. For the Unit Bet case, exactly one chip is transferred 
between the players involved in the round. This means that if all 
three players have more than one chip, it is impossible for a 
player to “bust out” or run out of chips in a single round. Only 
players with one chip at the start of the round can be ruined in 
that round. States of this form are called near-terminal states 
since they can go to a terminal state in a single step. For the No 
Limit case, more than one chip may be transferred between the 
players. In fact, all the chips of the player with the smaller wealth 
total may be transferred to the other player in a single round. 
This results in a higher probability of a player running out of 
chips in a single round. Hence, a player may achieve ruin faster, 
leading to a lower expected time until ruin. Also, if the two 
players involved in the round have equal wealth totals, each of 
them has a nonzero probability of achieving ruin in a single 
round. 
 
Also, observe that the only case when the expected time until 
ruin for the Unit Bet and No Limit games are equal is the state 
(2,1,1) for S = 4. The expected times are equal since the Unit Bet 
and No Limit scenarios for S = 4 are identical. In fact, it is the 
only instance where the Unit Bet and No Limit scenarios are 
identical. For values of S greater than 4, we observe that the 
expected time until ruin for the Unit Bet scenario is strictly 
greater than that of the No Limit scenario. This conjecture may 
be proved in another paper. 
 
Table 2 shows the expected time until ruin for S = 12 for the Unit 
Bet and No Limit three-player gambler’s ruin scenarios. 
 
Table 2:	Expected Time Until Ruin for States with S = 12 

  Expected Time Until Ruin 

State Unit Bet No Limit Bet 

(10,1,1) 2.50 1.870516 

(9,2,1) 4.50 2.611548 

(8,3,1) 6.00 2.890920 

(7,4,1) 7.00 3.045563 

(6,5,1) 7.50 3.046073 

(8,2,2) 8.00 3.154241 

(7,3,2) 10.50 3.651354 

(6,4,2) 12.00 3.771622 

(5,5,2) 12.50 3.728184 

(6,3,3) 13.50 3.800937 

(5,4,3) 15.00 4.023762 

(4,4,4) 16.00 3.710237 

 
Note that the states are arranged in increasing order according to 
the third coordinates, then the second coordinates. Observe that 
the expected time until ruin for the Unit Bet case is increasing as 
we go down the column. Recall that the expected time until ruin 
for a state (A,B,C) in the Unit Bet case is given by the formula 
! =

$!#%
!"#"%  [2, 7, 13]. Clearly, expected time until ruin is 

maximized when the three players start with equal wealths. 
 
Now, observe that while the expected time until ruin for the No 
Limit case is generally increasing as we go down the column, 
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there are some cases when the expected time decreases. For S = 
12, let’s look at two specific states: (5,5,2) and (4,4,4). 
 
For the state (5,5,2), notice that the top two players have the 
same wealth total. We compare this with the previous state 
(6,4,2), which has three non-equal positions. For the state (5,5,2), 
all three players can be ruined in a single round. For example, 
the first and second players can be ruined if they face each other 
in the round, with bet size equal to 5. Player 3 can be ruined in 
any round facing Player 1 and 2 if he loses the round with bet 
size equal to 2. Calculating the probability of a player being 

ruined in one round, we have 2V
*
+W V

*
MW + 2V

*
+W V

*
2W =

N
$O. For 

the state (6,4,2), Player 1 has zero probability of being ruined in 
a single round since the maximum permissible bet sizes 
involving them is either 2 or 4. Only Players 2 and 3 can be 
ruined in a single round. Calculating the probability of a player 

being ruined in one round, we have 1 V
*
+W V

*
1W + 2 V

*
+WV

*
2W =

M
21, 

which is smaller than 
N
$O. Hence, it is more likely that a player is 

ruined in the first round for the state (5,5,2), leading to a smaller 
expected time until ruin for this state. 
 
For the state (4,4,4), all three players have the same wealth total. 
This means that in the first round, any player may be ruined if 
the selected bet size is equal to 4. The probability of a player 

being ruined in one round is 6 V
*
+WV

*
1W =

*
1. Hence, it is more 

likely that a player is ruined in the first round for this state 
compared to the state (5,5,2), leading to a smaller expected time 
until ruin for the state (4,4,4). 
 
Other Results 
We compare the results obtained for the placing probabilities for 
some states of the form (3k,2k,k) using the multigraph model and 
the Independent Chip Model (ICM) [11], which is a widely used 
but simple approximation. Table 3 shows these placing 
probabilities. First place probabilities are the same for both 
models. We observe that the solutions obtained from the 
multigraph model depend on the actual number of chips of each 
player. Note that placing probabilities using the ICM depend 
only on the proportion of the chip stacks, which means that all 
states of the form (3k,2k,k) where k ∈ N have the same solution 
using the ICM. These subtle differences in placing probabilities 
for states having a constant chip ratio would have been difficult 
to detect using other models involving simulations. For a 
discussion on using regression with ICM to get good 
approximations for ruin probabilities, see Diaconis and Ethier 
(2020) [6]. 
 
Table 3: Solutions for Some States of the Form (3k,2k,k) 

State Position P(Xi=1) P(Xi=2) P(Xi=3) 

(3,2,1) 3 0.500000 0.351986 0.148014 

(6,4,2) 6 0.500000 0.345394 0.154606 

(12,8,4) 12 0.500000 0.338341 0.161659 

(24,16,8) 24 0.500000 0.331857 0.168143 

(48,32,16) 48 0.500000 0.326231 0.173769 
(96,64,32) 96 0.500000 0.321519 0.178481 

ICM 3k 0.500000 0.350000 0.150000 

(3,2,1) 2 0.333333 0.377858 0.288809 

(6,4,2) 4 0.333333 0.372622 0.294044 

(12,8,4) 8 0.333333 0.368471 0.298195 

(24,16,8) 16 0.333333 0.364867 0.301799 

(48,32,16) 32 0.333333 0.361926 0.304740 

(96,64,32) 64 0.333333 0.359609 0.307057 
ICM 2k 0.333333 0.400000 0.266667 

(3,2,1) 1 0.166667 0.270156 0.563177 

(6,4,2) 2 0.166667 0.281984 0.551349 

(12,8,4) 4 0.166667 0.293188 0.540145 

(24,16,8) 8 0.166667 0.303276 0.530057 

(48,32,16) 16 0.166667 0.311843 0.521491 
(96,64,32) 32 0.166667 0.318872 0.514462 

ICM k 0.166667 0.250000 0.583333 

 
For some wealth totals S, Table 4 shows the run time (in 
seconds) of our program in solving for placing probabilities and 
the number of operations needed in inverting matrix I − Q. 
Diaconis and Ethier [6] discussed a Markov chain model where 
states are represented as interior and boundary points in a 
triangular lattice. They noted that the only computationally 
difficult part of their program was inverting an X./*2 Y × X

./*
2 Y 

matrix. In the multigraph model, matrix size is equal to the 
number of unique nonterminal chip positions for the given 
wealth total. It is known that the inversion of an n × n matrix 

takes 
*
$ (0

$ − 0) = [(0$)  operations. Since the multigraph 

model uses a smaller matrix which has size about half of that of 
the triangular lattice model, it yields considerable savings in the 
number of operations. When S = 321 (the largest S for which we 
have results), matrix size is 25,600 × 25,600 and program 
runtime was about 43 minutes in a laptop with an AMD Ryzen 
7 2.00 GHz processor with 8 cores and 8 GB RAM. 
 
Table 4: Run Time and Number of Operations for Matrix Inversion 
for Some Values of S 

 Lattice Model Multigraph Model   

S n No. of Operations n No. of Operations Run time (s) Savings 

6 10 330 6 70 0.01 78.8% 

12 55 55440 30 8990 0.03 83.8% 

24 253 5398008 132 766612 0.14 85.8% 

48 1081 4.21 x 108 552 5.61 x 107 1.12 86.7% 

96 4465 2.97 x 1010 2256 3.83 x 109 16.00 87.1% 

192 18145 1.99 x 1012 9120 2.53 x 1011 271.33 87.3% 

 
Although considerable savings in run time is presented, the 
multigraph model is limited in other ways. For example, 
elimination-order probabilities cannot be solved directly without 
making significant changes to the algorithm. It is also limited to 
studies involving fair games, where any player has an equal 
chance of winning against each of the other players. These 
limitations stem from the treatment of states (a,b,c), (a,c,b), 
(b,a,c), (b,c,a), (c,a,b) and (c,b,a) as the same state since we 
focused on solving for placing probabilities in this study. 
 
 
CONCLUSIONS 
 
In this paper, a method of solving player equities in the No Limit 
three-player gambler’s ruin was presented. The assumptions for 
the problem were that betting was even-money with no draw, bet 
size may vary depending on the wealth of the pair of players 
involved in each round, and the participating players and bet 
sizes for each round were selected randomly following a 
uniform distribution. The method used recursions with players 
having integer wealths at the beginning of rounds. A multigraph 
with nodes representing the different states for a fixed total 
wealth S was constructed, and a linear system was constructed 
to represent the transition between these states. Solutions of this 
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linear system give the absorption probabilities for each player in 
all possible states and placing probabilities can be obtained by 
using known placing probabilities for the two-player game. 
Expected time until ruin can also be solved from the constructed 
linear system, but a formula has not been obtained for this 
expectation. Considerable savings in run time is presented when 
comparing the multigraph model with the standard triangular 
lattice model. 
 
The model may be extended to one wherein the selection of bet 
size follows a distribution other than the uniform distribution. 
This may be a better approximation of most poker tournaments 
since bet size between players usually belongs to the lower range 
of permissible bet sizes. The model may also be applied to other 
variations of the three-player game such at the player-centric and 
symmetric games. The model may also be extended to a general 
N-player problem, which the authors plan to do. 
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